SURFACE SHADING METHODS
(Section 14-3 in *Computer Graphics*)

- Contrast Intensity
- Gouraud Shading
- Phong Shading
- Ray-tracing Algorithms
- Radiosity
- Octree Methods
- Fractal Surface
- Antialiasing Surface Boundaries
Constant Intensity

- in some cases, constant surface intensities produce realistic shading
 - ambient light, no surface patterns, texture or shadows
 - point source light and a view reference point far from the surface
 - sufficiently small planar polygons approximating a curved surface, especially with
 - gradual changes in surface curvature and
 - distant light sources and view reference point
 - see figure 14-24 on page 290
Gouraud Shading

- linearly vary the intensity over each plane so that intensity values match at the plane boundaries
 - discontinuities between adjacent planes disappear

- technique
 - determine a normal for each surface
 - determine a normal for each vertex from the normals of the surfaces meeting at that vertex
 - calculate an intensity (monochrome or color) at the vertex, based on the normal
 - interpolate intensities along each edge
 - interpolate intensities across each surface
 (see figure 14-27 on page 291)
Phong Shading

- Gouraud shading introduces Mach bands which Phong shading overcomes
- technique
 - similar to Gouraud shading, except that normals rather than intensities are interpolated
 - intensities are calculated at each point along each scan line
Ray-tracing Algorithms

- an infinite number of intensity points could be generated over the surfaces of a scene
- ray tracing determines specular intensities at visible surface positions by tracing rays backwards from the viewing position to the light source(s)
- technique
 - start from the viewing position
 - pass a ray through each pixel in the view plane
 - attempt to trace each ray to a surface in the three-dimensional scene
 - reflect the ray from this surface as long as it encounters surfaces and until it encounters a point light source or exits the scene
Ray-tracing Algorithms, continued

- at transparent surfaces, divide the ray into two components

- after the ray has been processed, set the intensity of the pixel
Radiosity

- calculation of diffuse interreflection
 - surfaces are discretized into patches of roughly uniform size
 - energy exchange between patches is computed in a view-independent manner

- relationship between the radiosity of one patch and all other patches in the environment

\[B_i A_i = E_i A_i + \rho_i \sum_{j=1}^{n} B_j F_{ji} A_j \]

where
\(B_i \) = radiosity of patch \(i \) (energy/unit area/unit time),
\(E_i \) = emission of patch \(i \) (energy/unit area/unit time),
\(A_i \) = area of patch \(i \), \(A_j \) = area of patch \(j \),
\(F_{ji} \) = form-factor from \(j \) to \(i \) (fraction of energy leaving patch \(j \) which arrives at patch \(i \)),
\(\rho_i \) = reflectivity of patch \(i \), and
\(n \) = number of discrete patches.
Radiosity, continued

- computing the form-factors requires determining the patches visible to each patch over the entire hemisphere of directions above the patch

- \(\leq n^2 \) form factors

- extendable to specular interreflection
 - add bidirectional reflectance
 - use approximately pixel-size patches
 - approaches computational intractability
Octree Methods

- each octant contains information about the "material" at the position, but nothing about surface orientation

- examine the region around each octant

 - some void neighboring regions mean the octant is part of a surface

 - the surface normal is related to the positions of the void regions

- use a transmission coefficient to superimpose intensities for transparent octants in front of background octants
Fractal Surfaces

- represent fractal surfaces as several small planes, determining a surface normal for each plane

- unfortunately, fractal surfaces can contain infinite detail at each surface point
 - approximate normals can be calculated using coordinate differences between neighboring points
Antialiasing Surface Boundaries

- antialiasing smooths edges by adjusting pixel positions or pixel intensities
- boundaries between surfaces can be smoothed using similar techniques
 - combine intensities from all overlapping surfaces according to percentage overlap

![Surface Boundary Diagram](image1)

- in the case of ray tracing, project rays through pixel corners rather than pixel centers, averaging the four intensities

![Ray Tracing Diagram](image2)

- subdivide areas containing substantial detail
SURFACE SHADING METHODS

- Contrast Intensity
- Gouraud Shading
- Phong Shading
- Ray-tracing Algorithms
- Radiosity
- Octree Methods
- Fractal Surface
- Antialiasing Surface Boundaries