FRACTAL GEOMETRY METHODS
(Section 10-3 in Computer Graphics)

SWEEP REPRESENTATIONS
(Section 10-4 in Computer Graphics)

CONSTRUCTIVE GEOMETRY METHODS
(Section 10-5 in Computer Graphics)

QUADTREES AND OCTREES
(Section 10-6 in Computer Graphics)
Fractal Geometry Methods

- used to model irregular and fragmented features (of mountains and clouds, for example)
- a fractal shape has a fractal dimension in addition to its spatial dimension(s)
 - the length of a smooth curve between two points is precise
 - a fractal curve contains infinite detail at each point along the curve - the closer you get, the more detail you see
Fractal Geometry Methods, continued

- a fractal curve is generated by applying repeatedly a transformation function to points within a region of space

- detail in the final display is determined by
 - the number of iterations
 - the resolution of the display

- generating levels of detail
 - let $P_0 = (x_0, y_0)$ be the initial point
 - $P_1 = F(P_0)$
 - $P_2 = F(P_1)$
 - $P_3 = F(P_2)$

- either regular or random variations can be generated along the curve at each iteration
Fractal Geometry Methods, continued

- **example**

 (a) ![Pattern (a)](image)

 (b) ![Pattern (b)](image)

 (c) ![Pattern (c)](image)

 (d) ![Pattern (d)](image)

- pattern (a) is reduced by 1/3
- the reduced pattern is used to replace the middle third
- the result is pattern (b)
example, continued

length increases with each iteration

Segment Length = 1

Length = 1

Segment Length = $\frac{1}{3}$

Length = $\frac{4}{3}$

Segment Length = $\frac{1}{9}$

Length = $\frac{16}{9}$
Fractal Geometry Methods, continued

- many fractal curves are generated with functions in the complex plane
 - each two-dimensional point \((x, y)\) is represented as \(z = x + iy\)
 - the complex function \(f(z)\) maps points repeatedly from one position to another
 - iteration can cause points to
 - diverge to infinity
 - converge to a finite limit
 - remain on some curve
Fractal Geometry Methods, continued

- example: $f(z) = z^2$
 - transforms points according to their relation to the unit circle

for $|z| > 1$, the sequence transforms the point toward infinity

for $|z| < 1$, the sequence transforms the point toward the origin

example:

$x = 0.3, \ y = 0.5$

\[
f(z) = z^2 = x^2 - y^2 + 2ixy = 0.09 - 0.25 + 2i(0.3)(0.5) = -0.16 + 0.30i
\]

for $|z| = 1$, the sequence keeps the point on the circle
Fractal Geometry Methods, continued

- two fractal curves generated with the inverse of the function
 \[f(z) = (\lambda)(z)(1-z) \]
 - \(\lambda = 3 \)

- \(\lambda = 2 + i \)
fractal surfaces

- procedures are similar to fractal curve procedures

- a triangle becomes a fractal surface by random displacement of points on the boundary
 - select a random point on each leg of the triangle
 - apply random displacement distances to each of the three points
 - join displaced points with straight lines
 - repeat the process
fractal surfaces using quaternions

- $q = q_0 + i q_1 + j q_2 + k q_3$
 - the quaternion formulation requires 4 terms; 1 term is discarded

- points in space are transformed iteratively

- each point is tested to be inside or outside the surface

- any inside point that connects to an outside point is a surface point, keeping points near the surface
display of fractal surfaces

- represent each point on the surface as a small cube
- determine the lighting and color of each surface cube
- remove hidden surfaces
- see figure 10-31 on page 211
 - terrain reflects light
 - clouds absorb and scatter light
- each part of the fractal object has infinite detail
- see figure 10-32 on page 212
Sweep Representations

- solids with translational or rotational symmetry can be formed by sweeping a two-dimensional figure through a region of space

- translational sweep using a cross section of the intended object

![Diagram](image)

- rotational sweep using a cross section parallel to the axis of rotation

![Diagram](image)
Constructive Solid-geometry Methods

- begin with a set of primitive shapes
 - blocks
 - pyramids
 - cylinders
 - cones
 - spheres
 - etc.

- apply set operations
 - union
 - intersection
 - difference
Constructive Solid-geometry Methods, continued

- union

- intersection
 - find points within the boundaries of both objects or
 - use octree representations

- difference
Quadtrees and Octrees

- quadtrees: tree structures which can represent planar objects
 - each node has one field for each quadrant
 - if the quadrant is homogeneous (all the pixels are the same), the field stores its description
 - if the quadrant is heterogeneous, it is divided into four subquadrants

Region of a Two-Dimensional Space

Quadtree Representation
- subdivision continues until all quadrants are homogeneous

- 2^n-by-2^n pixels requires at most n levels
- quadtrees produce significant savings when large homogeneous areas exist
Quadtrees and Octrees, continued

- octrees: tree structures which can represent solid objects
 - each node has one field for each octant
 - if all the voxels in an octant are homogeneous (including "void"), the field stores its description
 - if the voxels are heterogeneous, the octant is divided into eight suboctants

![Region of a Three-Dimensional Space]

Data Elements in the Representative Octree Node
octree implementation

- a box is defined around the object
- octants are tested to generate the octree representation
- octrees can be unioned, intersected and differenced
- octrees support
 - transformation
 - hidden-surface removal
 - shading
 - conversion to a quadtree representation for mapping to a frame buffer
- spatial coherence produces savings
- Fractal Geometry Methods
- Sweep Representations
- Constructive Geometry Methods
- Quadtrees and Octrees